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STATIONARY DISCHARGE ACCOMPANYING EMERGENCE OF THE MAGNETIC FLUX 

THROUGH THE SURFACE OF AN INSULATOR 

S. F. Garanin, E. S. Pavlovskii, and V. B. Yakubov UDC 537.52 

It is shown in [I, 2] that when a magnetic flux flows through the surface of an insula- 
tor, a stationary surface discharge, which limits the velocity of outflow of the magnetic 
force lines, can appear. A theory of such a discharge, using a number of simplifying assump- 
tions, in particular the assumption of total single-ionization of the vapor of the insulator 
flowing out of the discharge, which is valid for not very strong magnetic fields H ~ 104 Oe, 
is developed in [2]. In this paper we examine the more general case of arbitrary multiple 
ionization, which is important for stronger magnetic fields, in particular fields used in ex- 
periments on magnetic acceleration of shells (see, for example, [3]). 

In the problem under examination the mutually perpendicular magnetic H and electric E 
fields are parallel to the surface of the insulator, which we assume is flat. The self-sus- 
taining surface discharge along the vapor of the insulator is realized due to the fact that 
the outflow of plasma driven by the ponderomotive force from the surface is compensated by 
vaporization of new sections of the insulator by the thermal radiation from the plasma being 
carried away. The ionized vapor entering into the discharge zone continues to be heated by 
Joule heat and is accelerated until the plasma velocity reaches the velocity vl of the out- 
flow of magnetic force lines and the electric field in the comoving coordinate system vanishes. 

Under typical experimental conditions, the thickness of the discharge XH is much smaller 
than the dimensions L of the region in which the vapor of the insulator moves (for H ~ I0 ~ 
Oe, x H is of the order of 0.i cm and decreases with increasing H). For this reason, the 
time for restructuring of the vaporization regime is much shorter than the characteristic 
time for the change in the magnetic fields or other quantities that affect the current layer, 
and the discharge may be assumed to be stationary. In solving the complete magnetohydro- 
dynamic problem, which describes the action of one or another experimental setup, in which 
such a discharge occurs, the discharge zone can be replaced by an infinitely narrow jump in 
all MHD quantities. The purpose of this work is to obtain the conditions on this jump; for 
this it is necessary to find the dependence of the velocity vl of outflow of the plasma as 
well as its density and temperature on the magnitudes of the magnetic fields in the unvapor- 
ized insulator Ho and at the outlet from the current layer HI. 

A significant factor is that, in order to obtain the dependences indicated, strictly 
speaking, it is not sufficient to know only the integral laws of conservation, relating the 
quantities at the inlet and outlet of the discharge zone; it is also necessary to solve the 
problem of the structure of this zone. In [2] it was possible to circumvent the solution of 
this more complicated problem only by making an approximation in which the temperature of 
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the plasma flowing out of the discharge is assumed to be high enough for practically complete 
first ionization, but simultaneously low enough so that further ionization can be neglected; 
in addition, the thermal energy is assumed to be much smaller than the ionization energy, 
and the thermal pressure is assumed to be much smaller than the magnetic pressure. In this 
work the formulation of the problem is free of the quite rigid restrictions indicated above 
[2]. From themathematical point of view, the problem is an eigenvalue problem. 

The dependence of all quantities on the normal coordinate x is described by the system 
of stationary MHD equations: 

pv = const; (1)  

P + pv ~ -~ H~/8~ ~-'const;  (2)  

pv(w ~- v2/2) - -  Q - cHE/4~ : const; (3) 

--ndH/dx+ vH= cE = const, (4) 

where p(x), v(x), P(x), H(x), w(x), Q(x), and ~(x) are the instantaneous values of the den- 
sity, velocity, pressure, magnetic field, specific enthalpy, heat flux, and coefficient of 
magnetic diffusion, respectively; E is the electric field; and c is the velocity of light. 
The system (1)-(4) represents the laws of conservation of mass, momentum, energy, and mag- 
netic flux in a coordinate system in which the current layer is at rest. It may be assumed 
that this system coincides with the laboratory system, since the characteristic density in 
the current layer is much smaller than the density of the insulator. 

The solution of the problem is simplified by the fact that in cases of practical inter- 
est the analysis of the heat flux Q can be greatly simplified. We shall estimate the optical 
thickness of the current layer XH/l (~ is the Rosselund mean free path of the radiation, 
XH ~ ~/v), starting from the diffusion approximation in the description of the heat transfer. 
Within the framework of this approximation, the coefficient of thermal diffusivity ~XoT4/pw 
and the magnetic diffusion ~ must be of the same order of magnitude (here, o is the Stefan-- 
Boltzmann constant, T is the temperature). Using also the relation 

p w N p v ~ , . ~ H 2 / 8 ~  

and power-law dependences of P, ~, and ~ on 0 and T, we find 

XH/~ ~ UH/~U ~ ffT4/(pWV) ~ 0.2H~ 

w h e r e  H i s  m e a s u r e d  i n  M0e. 

Thus, for a typical insulator containing light elements and not very high magnetic 
fields, the optical thickness of the current layer is small. For this reason, the heat flux 
Q toward the insulator from the plasma leaving the current layer and having a temperature Tx 
must be assumed to equal oT~ and, in addition, the quantity Q remains practically unchanged 
over the thickness XH, where the remaining quantities (H, p, v, T, and the fluxes of gas- 
dynamic and magnetic energy) change considerably. Absorption of thermal flux begins at dis- 
tances x ~ X, i.e., at the outlet from the current layer toward the insulator, where the 
changes in the remaining fluxes in Eq. (3) are much smaller than their characteristic values 
in the current layer. Therefore, the entire region is separated into two zones: zone I of 
the current layer, where the quantity Q in (3) can be neglected, and zone II of absorption of 
thermal flux, where in (3), aside from Q, only terms which are first-order infinitesimal with 
respect to the velocity v need be retained. 

The indices 0 denote quantities in the initial section of the discharge (on the side of 
the unvaporized insulator); the indices i indicate quantities at the end of the discharge 
zone. Since the density of the insulator is high, Vo = 0. The heat flux does not penetrate 
deep into the insulator, so that Qo = O. The current density equals zero at the outlet from 
the current layer, so that from (4) it follows that 

vIH, = cE. 

We introduce the dimensionless variables 

(5) 

u . ~ v / v ~ ,  h~---H/H~, q~-~Q/v~ . (H] /8~) ,  p = P/P~, 
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as well as the parameters ~ and 

Then, treating the insulator vapor as a gas with an adiabatic index y and using (1)-(5), we 
rewrite Eqs. (2) and (3) in the dimensionless form 

From Eqs. 
of q in zone I. 

where 

v p  + ~tu + h ~ = Vpo + h~ = v + ~t + 1; (6 )  

,~ - -  "1 v p u  + p~u2/2 - -  q + 2h = 2t, 0 = ~ v + -~- - -  ql + 2. (7 )  

(6 )  a n d  (7)  we c a n  d e r i v e  a r e l a t i o n s h i p  b e t w e e n  1~ a n d  v ,  u s i n g  t h e  s m a l l n e s s  
N e g l e c t i n g  q a n d  e l i m i n a t i n g  p f r o m  (6 )  a n d  ( 7 ) ,  we o b t a i n  

f___v (~ } u=[~_ t + ~ + l - - h ~ ) + V ~  ]v+~ (8) 
- -  1 . ~ _ i  ~ ,  

i (9) 

Analysis of formulas (8) and (9), using the conditions u = 1 at h = 1 and u = 0 at h = 
ho > i, shows that at h = 1 the plus sign must be used in the radical in (8). On the other 
hand, at the point h = ho, u = 0 at the boundary of zones I and II, the minus sign must be 
used; this follows from the condition that p > 0. Since the rarefaction shock wave is un- 
stable, the sign of the radical must change when D = 0. In this case, it follows from the 
condition D > 0 that at this point dD/dh = 0 must hold. 

From these conditions we find a relationship between V and v in parametric form 

2h~? 2 (h, - -  t) (?h. + 2 --  ?). ( l O )  
? + I (?h, -- ~ + t) ' 

v = 9 (72 - -  1)/72h, + h~ - -  ~ - -  1, ( 1 1 )  

where h, is a parameter. 

The dimensionless magnitudes of the magnetic field ho and of the pressure po in the in- 
sulators* can be calculated from Eqs. (6) and (7): 

ho = t + ~/4  + v? /2 (?  - -  1); ( 1 2 )  

po = ~ + ( I  + ~ - h~)l~. (13) 

We should point out the restriction on the region of variation of ~ and ~. An analysis 
of the dependences h(x) in the limit h, u + 1 [Eq. (4)] shows that a finite solution exists 
only when the following inequalities hold: 

The dependence found for V(v) from (i0) and (ii) satisfies the first inequality. The second 
inequality is nontrivial. It coincides with the condition for the total velocity of sound ci 

c~ ~ R~/4av, + ~P,/vl > ~,  (14) 

which is required for stability of the solution [4]. The presence of a limiting vaporization 
regime, in which v~ reaches the maximum possible value of vlmax = ci (analog of the Jouguet 
regime in combustion), is related to this restriction. 

To obtain the magnitude of the velocity v~, we must examine in greater detail the absorp- 
tion of heat in zone II. It was shown above that throughout the current layer the heat flux 

Q - QI = (ITS, ( 1 5 )  

*The presence of a pressure po # 0 in the insulator with high magnetic fields (H ~ i0 MOe) 
can lead to the appearance of an appreciable electrical conductivity. The theory being pre- 
sented will then no longer be applicable. 
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where Tz is the temperature of the vapor at the end of the discharge region. We shall as- 
sume that the mean free path of radiation depends only on the density and temperature X(p, T) 
(the assumption of a "gray" body). We shall assume a power-law dependence on temperature 
and density for the equation of state, mean free path, and coefficient of magnetic diffusion: 

Then, from (15), we obtain 

ql~G 

Using the smallness of q in Eq. 
power of u, 

Plp= A T"Ip~,; (16) 

% = ATilp~; (17) 

• = K/@T2). (18) 

-T~-~ I ~4.~/~ \-S-~-) (19) 

(7), we find, retaining the leading terms in the expansion in 

dq 2~v I ? 
- -  v p  o _ _  

d~ x ? - - t  

Here, the dependence q(~) is described by the formula 

du (20)  
d~ " 

1 

q (~) = 2ql ~ cos Oe-~13~ (cos O) 
o 

for pure absorption of photons in zone II from a Lambertian source, since, by virtue of the 
f a c t  t h a t  q l  << 1 ,  t h e  t e m p e r a t u r e  i n  zone  I I  i s  much l o w e r  t h a n  T~. T r a n s f o r m i n g  t o  t h e  
variables 

q 
Y~-~, 

in Eq. (20) and using (16)-(18), we obtain 

,~ 'VP o U 
? -- I ql 

where a = i --k + (j + l)(l --m)/n; 

dz @ (21) 
d~ + az~ = d~ " 

J+J 
~ - - I  n v~+ 2~ 

ql  2A (VPo) (22) ~ 
The solution z(~) of the first-order differential equation (21) must satisfy the two boundary 

conditions 

z-+- [(~ - -  l)a~] -1/(~-1) as ~ -->- 0; (23)  

z(~) -+ y(~) m ~ -~ oo~ (24) 

so that we have a problem for determining the eigenvalue a. The condition (23) follows from 
the requirement that the solution transform smoothly to the solution in zone I in the limit 
h § ho. The condition (24) follows from the fact that the heat flux is responsible for the 
initial heating of the insulator. Substituting the eigenvalue a obtained after the solution 
of the problem into (22), we can calculate the velocity vl. 

Let us examine a specific, quite typical, example. For Plexiglas, using Saha equation 
with multiple ionization [5], the mean free path of radiation with multiple ionization [5], 
and the electrical conductivity of a Lorentzian electron gas [6], in the region of tempera- 
tures 3-30 eV and densities 10-3-10 -5 g/cm 3, we can obtain the following values of the con- 

stant in formulas (16)-(18): 
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Fig. 1 

A = 0,37, m = 3/36~ n = i9/36, 7 = 4/3~ (25)  

A = 2.30-a,~ i = 3,857, ] = 2,i43,: 

K = 0,37, k = 0A43,: 1 = 0,857. 

We are using the system of unit g, cm, ~sec; the temperature is measured in eV. In these 
units, a = 1.03.10 -6 

The numerical solution of (21) with the boundary conditions (22)-(23) gives a = 2 and, 
from (22), 

5.5p~'~ ~ (H1/8~)2 o , , ~ .  (26) 
U1 ~0,345 

We note that the dependence of the solution obtained on the magnitude of the mean free path 
is very weak (the velocity of the vapor vl ~ I~176 For this reason, it is natural to ex- 
pect that the inaccuracy inherent in the gray-body approximation likewise has virtually no 
effect on the result. 

The formula (26), combined with formulas (10)-(13), gives a relationship between the 
velocity of the vapor vl and the fraction of the current branching off into the discharge 
(I -- 1/ho) as a function of the magnitude of the magnetic field Ho. This relationship is the 
boundary condition in the complete MHD problem. 

The limiting regime of vaporization, corresponding to the equality in formula (14), cor- 
responds to the following values of the parameters: 

~ t = 2 , 3 2 ,  v ~ 0 , 0 9 3 ,  h o = 3 , 7 3  po=3,04, 
Yl max : 37 (U~/8g) ~ (27) 

and the limiting power transferred through the surface of the insulator equals 

uIHIHo/~ = 20 (H~/8~)  ' ' '~" .  

The q u a n t i t y  q~ f o r  t h e  e x a m p l e  f o r  t h e  e x a m p l e  u n d e r  e x a m i n a t i o n  i n  t h e  l i m i t i n g  r e g i m e  

q, = 0.099 (H~/8~)  ~176 

is virtually independent of Ho and for Ho < i0 MOe is of the order of q~ ~ 0.i << i, which 
confirms our assumption that the radiation energy flux is small. 

To illustrate the solution obtained, the dependences of the basic magnetohydrodynamic 
quantities on the optical thickness ~[t ~ E (T/T~) 4] are illustrated in the figure for the 
limiting regime. 

When the velocity v: drops below the limiting value, the fraction of the current branched 
off also decreases. For example, when v~ = 0.61 x Vlmax, the fraction of the branched current 
equals (i -- I/ho) = 0.ii (ho = 1.128, ~ = 0.31, ~ = 0.026). If, however, the velocity of the 
boundary of the vapor leaving the insulator in the complete MHD problem exceeds V~max, then, 
since the velocity of the vapor near the insulator remains equal to Vlmax, a rarefaction wave 
forms between the insulator and the boundary [2]. 

We note that we have also obtained the numerical solution of the problem within the 
framework of the diffusion approximation for the heat transfer. In spite of the formal inap- 
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plicability of this approximation, the results (as often occurs with the diffusion approxima- 
tion) turn out to be quite close to the ones presented above. In particular, the limiting 
velocity Vlmax depends in almost exactly the same manner on Ho as in (27); in addition, the 
difference for Ho = 1 MOe is only of the order of about 10%. 

As we indicated above, the theory presented here is applicable only for high magnetic 
fields H ~ i07 Oe (see footnote above concerning the pressure in the insulator). Otherwise, 
the theory should be applicable in all cases when the equation of state, the mean free path, 
and the conductivity of the insulator vapor can be described by power-law formulas (16)-(18) 
and when the vaporization process is stationary. The latter condition presumes quite slow 
variation of the magnetic field over a time ~%/vi, during which the insulator particles fly 
away over a distance of the order of the mean free path of the photons, in order that the in- 
tensity of the irradiation of the insulator surface likewise vary slowly and correspond to 
the intensity of blackbody radiation of the vapor ~T41. 

The specific values of the parameters (25), as indicated above, were selected for HeCs" 
0=* with magnetic fields of H ~ i05-i0 ~ Oe and velocities vl ~ i0~-i07 cm/sec in mind, in 
order to investigate in the theory the process of vaporization of the insulator in fields 
exceeding [3] H ~ 104 Oe [i, 2]. We note that although the parameters (25) were not special- 
ly calculated for fields of H ~ i0 ~ Oe, used in the experiments in [i], the results calcu- 
lated with these parameters for the velocity v~ and the velocity of the shock wave in the 
magnetic shock tube agree reasonably well (taking into account the possible appreciable dif- 
ference between the intensity of irradiation of the insulator and the blackbody radiation of 
the vapor due to the small optical thicknesses in [i]) with the experimental values in order 
of magnitude and give approximately the same dependence of the velocities on the magnetic 
field: When H varies by an order of magnitude, the velocity varies in the experiment by a 
factor of 2-3. 
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0 , 1  
*There is a very weak dependence of the parameter qi on the atomic weight Ai.(qi ~ Ains) with 
very similar ionization potentials for all the materials, thus permitting the application of 
numerical relationship (26) for all other insulating materials. 
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